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Abstract—The plane elasticity problem of a finite, rigid rectangular block partially embedded in, and
perfectly bonded to an elastic half space is investigated, The problem is formulated by the superposition of
the solutions to the problems of horizontal and vertical line inclusions beneath an elastic half space.
Substitution of these results into the boundary conditions appropriate for the embedded block problem
leads to a system of coupled singular integral equations, whose unknowns are the normal and shear stress
discontinuities between the bonded surfaces.

Two distinct sets of loads are applied to the embedded block, so that it either translates without rotation
in the y-direction, or rotates about an axis in the z-direction.

Several important physical quantities are computed, e.g. the diffusion of the load from the block into the
elastic half space for vertical translation and the rotational stiffness.

1. INTRODUCTION

This paper is concerned with the stress analysis of an elastic half space, in which a perfectly
bonded, rigid rectangular block is partially embedded. The bond thickness is assumed to be
sufficiently thin so that the displacements of the bonded surfaces are continuous. Within this
context the problem is one of plane strain and can be considered appropriate to calculations
that involve the stress distributions around foundations where the out-of-plane dimensions are
very large when compared with the length or width of the rectangle. Alternatively, the problem
can be viewed as one of generalized plane stress analyzing the load diffusion from a finite, rigid
rectangular insert, partially embedded within a semi-infinite sheet, where the axis of the insert is
perpendicular to the edge of the sheet. The geometry and coordinate system for such a block is
shown in Fig. 1, where u is the shear modulus and « is related to Poisson’s ratio by « =3 -4»
(plane strain) or k = (3~ »)/(1 + ») (plane stress), and v is Poisson’s ratio.

Problems such as the one considered here have had a long history, which is best sum-
marized in a paper by Muki and Sternberg[1], who consider the diffusion of load from a
transverse tension bar into a semi-infinite elastic sheet. They reconsider the problem initially
posed by Reissner{2], who considered the load transfer from a transverse stringer, a finite
segment of which overlaps with, and is continuously bonded to, a semi-infinite elastic sheet.
Theirs is essentially a contact problem in which the finite stringer is attached to the semi-infinite
sheet and their objective is to obtain a systematic reduction of the problem to a Fredholm
integral equation via two contact models, i.e. line-contact or area-contact.

The present analysis differs from theirs in that the sheet is assumed to be cut so that it has a
finite rectangular notch at its surface. A perfectly matching rigid, rectangular insert is then
bonded within this notch.

Loading is applied to this embedded insert so that it either translates without rotation in the
vertical or horizontal direction, or rotates about an axis in the z-direction due to an applied
moment. The plane strain case corresponds to an infinite, rectangular block embedded within an
elastic half space undergoing vertical or horizontal translation, or rotation.

It should be noted that Muki and Sternberg have also dealt with the three-dimensional
problem of load diffusion from an axially loaded rod to a half-space[3, 4]. In [3] the problem of
the axial force decay in an infinite cylindrical elastic bar bonded to an infinite medium is dealt
with. An approximate solution scheme for cross-sections of arbitrary shape is developed and
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Fig. 1. Geometry and coordinate system for a partially embedded finite rigid block undergoing vertical
translation.

compared to the exact one for the case of a circular bar. This scheme is then used in{4] to solve
the problem of load diffusion from a bar of arbitrary uniform cross section partially embedded
in, and bonded to a semi-infinite solid.

The solution of the considered problem is developed in successive stages. In Section 2
Green’s functions are written for a horizontal and vertical line load beneath an elastic half
space. This formulation allows the boundary value problem to be given as having boundary
conditions only on the surface of the notch[S]. The results were derived using integral
transform techniques, but they can also be derived by other methods. The primary references
used for these derivations were the text by Sneddon(6], and the tables edited by Erdélyi[7].

Section 3 deals with the vertical translation of the finite rigid rectangular block partially
embedded in, and perfectly bonded to an elastic half space, under an applied load 2P acting in
the negative y-direction. The appropriate boundary conditions are written by superposing the
horizontal and vertical inclusion results. The boundary conditions become the data for a system
of singular integral equations, which can be solved numerically. It is noted that there are four
points on the block that are singular: the intersection of the block with the free surface, (xc, 0),
and the lower corners of the block, (*c, h). These singularities can be accounted for in the
analysis by the establishment of appropriate relationships through an asymptotic expansion of
the governing singular integral equations in the vicinity of these corners. It should be noted here
that the solution of the transcendental equation derived for the corners (xc, k) leads to two
negative roots. Therefore, they both lead to singular contributions. The singular stress field is
dominated by the largest singularity, and this is the one used in the present analysis. To the
authors’ knowledge, the only work that considers both negative roots at a corner such as the
one encountered here, is a paper by Westmann{8], which deals with a wedge bonded to a half
plane along a finite length. The solution for that problem was developed using Mellin trans-
forms, and numerical results were obtained by use of a modified finite difference method.
However, accounting for both negative roots is beyond the scope of this paper. A possibly
simpler estimate for the numerical results is obtained by considering the analogous problem of
two rigid vertical inclusions of length equal to the sides of the rigid block, and separated by a
distance equal to the base of the block, partially embedded in and bonded to an elastic
half-space, and each loaded by P in the negative y-direction. This problem is considered in[9];
a discussion of the results obtained is included in Section 5 of the present paper.

The case of horizontal displacement of the rigid block loaded by 2Q, acting in the negative
x-direction, and a moment M is also formulated in Section 3. The results obtained from the
solution of this problem are given in[9), and they will not be reported in the present paper.

Section 4 investigates the rotation of the rigid block about an axis in the z-direction under
the action of a moment M.

In Section § the method for obtaining numerical results is discussed. The collocation scheme
introduced by Erdogan, Gupta and Cook[10] is used to solve the system of singular integral
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equations governing each of the problems formulated in Sections 3 and 4. The method of solution
allows the calculation of certain important physical quantities such as the diffusion of load from
the block into the elastic half space for vertical translation and the rotational stiffness.

2. FORMULATION AND BASIC EQUATIONS
(a) Horizontal inclusion in a half space
The equations to be obtained here are for a bonded, rigid inclusion of length 2¢ located a
depth h beneath the free surface, y =0, of an elastic half space. The inclusion is assumed to
have zero thickness and its geometry and coordinate system are shown in Fig. 2. If the
discontinuities in the normal and shear stresses are designated by A(x) and B(x), respectively,
then the following conditions must be satisfied:

-0 =A)) _
7'&2)—79}=B(x)} y=h -csx=c @n

In addition to the above equations, the following continuity and boundary conditions must
be satisfied:

u@-uP=0
u‘,z’—ug,”=0}y=h’ (=X 2.2)
7y(%0) = 1, (x,0) =0, O=|x|<» 2.3

where the superscripts (1), (2) define the regions above and below the inclusion.
In terms of the stress discontinuities, A(x) and B(x) defined above, the displacement
derivatives and stresses throughout the half space are given as
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Fig. 2. Superposition solution.
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1 C [
Tey(x,y) = m{f‘( A(s)Knq(x,y;5) ds +J'_C B(s)Ks(x,y:s5) ds} (2.10)

The functions Ky, and K, i=1,2,..., 7, are given in the Appendix and they are rational
functions of x and y with both numerators and denominators being polynomials in x and y.

Equations (2.4)-(2.10) were derived using integral transform techniques 6, 7), but they can also
be derived by other methods.

(b) Vertical inclusion in a half space

Here, the case of a vertical inclusion of length (b-a) perpendicular to the free surface of an
elastic half space, y = 0, is solved (Fig. 2). Let the jumps in the normal and shear stresses across
the inclusion be C(y) and D(y), respectively; then, the following relationships must hold:

G-tw=C
- :i‘J—Dg;} K=o asysh @1
u(Z) _0 }
X=c¢,asysb; 2.12
u® - ‘,.”—0 y (2.12)
T (x0) =7,(x,0)=0, y=0, 0s|x|<x (2.13)

For this case the superscripts (1), (2) refer to the regions to the left and right of the inclusion,
respectively.

In terms of the stress jumps, C(y) and D(y), defined by eqns (2.11), the displacement
derivatives and stresses within the half space are given as

a—;;(x,)’)=m{f C(t)Ln(x,y;)dt +J D(t)Ls)(x,y; ;)dt} (2.14)
%‘}(mhm{ f C(t)Lna(x,y;0)dt + f D(t)LsxAx,y; ,)d,} (2.15)
a;y'} "’Y)=m{ f CU)Lns(xy;0dt + f D(t)Lss(x,y;t)dt} (2.16)
%g(x,y)=m{j C(t)Lnalx,y;t)dt +j D(t)Lsi(x,y; t)dt} (2.17)

Ta(xy) = Tk T I)U C(t)Lys(x,y;0)dt + f D(t)Lss(x,y; t)dt} (2.18)
iy = Tl +l){f C(t)Lne(x,y; t)dt+f D(t)Lse(x,y; t)dt} (2.19)
Tay(x,y) = Tk + ]){ f C(t)Ln+(x,y;t)dt + f D(t)Lsx(x,y; ;)d,} (2.20)

where the functions Ly; and Lg;, i = 1,2,...,7, are given in the Appendix. It is noted that the
superscript 1I is used to identify displacement derivatives and stresses associated with the
vertical inclusion at x = ¢, while 1 was used in connection with the horizontal inclusion located
at y = h. To obtain the equations associated with a vertical inclusion of length (b-a), located at
x = —c, one replaces ¢ by —c in eqns (A15}-(A28), C(t) by E(t), and D(t) by F(t) in eqns
(2.14)~(2.20). For this case the superscript III will be used. These equations will not be listed here
but will be incorporated in the following sections.

3. VERTICAL DISPLACEMENT OF EMBEDDED BLOCK

The results of the preceding section are now superposed to formulate the problem of a rigid
block perfectly bonded to an elastic half space and loaded as shown in Fig. 1. The limits of
integration for the vertical inclusions (solutions II and III) are taken as a =0 and b = h (Fig. 2).
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The boundary conditions for this problem are given next:

1
%:%—(x,hH%;-‘i( h)+ ——(a h)=0
ou.  oul au au! ,—c=x=<c, y=h; 3.1)
ay .
= St + B+ B e =0
! m
%‘i=%‘_( Gy )+2u_x( c,y)+aux - ,)’) 0
5uy ﬂuyl au"l ,0sy<sh x=~c; (3.2
‘a'y*=-a-y"(-c,Y)+—i(»c,y)+——‘—( ¢,y)=0
du, _ du; F! Ll m
3“;“‘%’( y)+ . ,y)+9-"—(c.y)=o
du, _du au aum ,0sy=h x=c (3.3
‘a'yx=";.y‘( 6y +HEY) + 5 Hey) =0

Equations (3.1)~(3.3) represent a system of six singular integral equations, which are given
next:

© AKni(xhis)ds + f B(5)Ksi(x,h;s)ds + f C()Lyi(x,hs5t)de + f D(t)Ls(x,h;t)dt
+ L E(t)Lyi(x,h;t)dt + jo F()Ls\(x,h;t)dt =0, ~c=<x=c; KX))
¢ c h h
f_ A(s)KNz(x,h ;$)ds + f B(s)Ksx,h;s)ds + fo C(t)Lyax,h;t)dt + L D(t)Lsx(x,h;t)dt
h _ h -
+ f E(t)Lyn:(x,h;t)dt + f F(t)Lsa(x,h;t)dt =0, —c=<x=c; (3.5
0 0
< < h
[ Aku-cyisns + [ BoK-cyins+ [ CLust-cynt
h L _
+J; D(t)Lgs(—c,y;t)dt +jo E(t)Lys(—c,y;tXdt =0, 0<y=<h; (3.6)
c 4 h
[ a@Kud-cyisns+ [ BOKst-cyisis + [ COLud=cyin
h h _
+J; D(t)Ls4(-c,y;t)dt+j0 F(t)Lsy(=c,y;t)dt =0, O0=y=h; 3.7
¢ c h h -
[ A@Kuseyssuis + [ BOKsseyisus + [ coLusteyar+ [ EOLuseynar
h
+ J; F(t)fss(c,y;t)dt =0, O0=sy=h; (3.8
< < h h -
L A(s)Knd(c,y;s)ds + f_ B(s)Ks«(c,y;s)ds + L D(t)Lsd(c,y;t)dt + fo E()Lyd(c,y;t)dt
h
+ fo F(t)Lsdc,y;t)dt =0, 0sy=h. (3.9

The barred kernels Ly; and Lg, i =1,2,...,4, are readily obtained from the corresponding
unbarred kernels given in the Appendix by replacing ¢ by —c. It is also noted that the boundary
conditions for the integral equations are homogeneous. However, the input data will be given in
the form of subsidiary conditions that involve the load 2P applied to the block and the con-
straints, when the symmetry appropriate to the considered problem is used.

Since eqns (3.4)-(3.9) deal with the geometry of corners, their limit near the corners must
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produce definite relationships in the neighborhood of such corners. These relationships may be
directly obtained from the governing singular integral equations, after the contributing parts are
isolated from the entire equations. First, the order of the singularity at the intersection of the
free surface with a vertical inclusion will be established by considering the appropriate
contributory terms. Adjusting the coordinate system to account for the right-hand inclusion, the
terms leading to the determination of the singularity at the free surface are given as

h 2k k141 4t(y—-t)] _
LC(:)[y_t+y+t+(y+t), dt =0, (3.10)

where y is approaching zero. A second equation, identical to (3.10), is obtained for D(¢).
Assuming solutions of the form,

Cit)y=Cin', (3.11)
D(t)= D), (3.12)

where 0 <7 <1, the following eigenvalue equation is deduced for the determination of 7:
2
sinz(ﬂ) Sty 1 7. (3.13)

Except for a minor change in notation, eqn (3.13) is identical to that determined by Williams[11]
for a right-angle corner of an elastic plate in extension with fixed-free boundary conditions.
When eqn (3.13) is solved for v = 0.3 (plane strain), the result is

n=071117. (3.14)

Conditions at the corners (c, h) and (=c, h) can be established in a similar manner through
the use of eqns (3.4)~(3.9), where the following asymptotic forms are assumed for the sought
functions:

A(s) = A(s)c?=5H)%", B(s)=B(s)(c*- s},
CHy=C)y"(h-t),...,Ft)=FOt" "(h— 1) (3.15)

where 0 < ¢ < 1. The relationships which must be satisfied in the vicinity of the corner (c, h) are
found to be

 cos(m{)Bo+(k - {) cos(z;—g)Co +¢ sin(zz{-)Do =0 (3.162)
k cos(m{)Ag+{ sin(%()co +c+ 0 cos(Z)D=0 (3.16b)
¢ sin(Z) Ao+ (x+0) cos(fzﬁ)lso + x cos(m)Co=0 (3.160)
(= D cos(Z ) Ao+ ¢ sin(%g—)Bo +x cos(m{)Do =0, (3.16d)
and for (—c, h)
k cos(m)Bb+ (k — {) cos(‘%{)Eo— ¢ sin(Z)Fo=0 (3.17a)
k cos(n{)As—{ sin(zz£>Eo +(k+) cos(lz{)ﬁ, =0 (3.17b)
(c ~ £ costm) g & sin( 55 ) B+ x cos(mp)Fa=0 (3.170)

- sin(fz-{)AH (k+?) cos(%{)BH k cos(m{)Ey = 0. (3.17d)
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In eqns (3.16) and (3.17) the following notation is used:

Ao=A(c)2c)* '™, By=B(c)2c)*'Ih",
Ab=A(=c)2c)* 'R, By=B(—c)(2c)¥ 'R,
Co, Do, Eo, Fo= C(h), D(h), E(h), F(h). (3.18)

Equations (3.16) and (3.17) lead to the same eigenvalue equation, namely

[Kz sin'(22%) - ;2][,8 sin'( %) - g’] =0, (3.19)
where ¢{ is determined from

sin(i;i{) =:ly (3.20)

which is in agreement with Williams’ result for a fixed-fixed 3#/2-corner of an elastic plate in
extension[11]. If the positive sign in eqn (3.20) is chosen and » = 0.3 (plane strain), the result is

¢ =0.59516. (3.21)

It should be noted that eqn (3.20) with the negative sign also yields a root in the interval of

interest, { = 0.75904; however, since the numerical scheme used to obtain numerical results[10]
can only accommodate one of these roots, the gravest one, given by eqn (3.21) will be used.

Equations (3.4)-(3.9) represent a system of six singular integral equations, which along with

appropriate subsidiary conditions can be solved for the six unknown stress discontinuities A(s),

B(s),..., F(t). However, by taking advantage of the symmetric nature of the problem, the

number of unknowns can be reduced to four, since the following relationships must hold:
E(y)=-C(y), F(y)=D(y). (3.22)
Thus, the subsidiary conditions associated with eqns (3.4)—(3.9) are not needed and wili not be

listed here. Equation (3.22) is incorporated to write eqns (3.4), (3.5), (3.8) and (3.9) in the
following form:

¢ < h
[ Aeuitxhisnts + [ BoKsxhisis + fo COLui(xhst) - Eni(xohi)]de
h
+jo D(t)[Ls|(x,h;t)+I:s|(x,h;t)]dt =0, —c<x<sc; (3.23)
¢ c h -
[ A@Kunios+ [ BoKsmhisds + [} COLrtihit - ustehint
h -
+ [ DWOILokxhi+ Eolihitlde =0, —c<xsc; (020
¢ c h -
[ Awknstcyisns + [ BoKseyisds+ [ COlLuteyin - Luseyinn
h -
+J; D(t)Lsy(c,y;t)dt =0, O=y=<h; (3.25)
< c h _
f_ CA(S)Km(c,y;S)dS + f_ B(s)Ksdc,y;s)ds + fu C(®)[—Lnd(c,y;t)lde
h _
+ L DOILsdc.yit)+ Lsdcy:ldt =0, 0sy=h.  (3.26)

Note that eqns (3.6) and (3.7) are eliminated as unnecessary. It is also clear that A(x) must be
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symmetric and B(x) antisymmetric in the range —c <x =<c. These properties will be in-
corporated in the numerical analysis.

Since the unknown stress discontinuities, A(s), B(s), C(t) and D(t), have integrable sin-
gularities at the end points, in addition to eqns (3.23)~(3.26), they must also satisfy the following
subsidiary conditions[10]:

f Alx)dx +2 Joh Diy)dy =2P; (3.27)
joc [%] =0 (3.28)

J, 5] e [ ] ay=0; (329)
f B(x)dx =0, (3.30)

The choice of eqns (3.27)~(3.30) as the subsidiary conditions appropriate for this problem
warrants a brief discussion. It was found that extreme care must be exercised in selecting the
correct combination of conditions from several available relationships which could, conceiv-
ably, serve as subsidiary conditions. The task is to prescribe conditions which supplement the
boundary conditions in describing the problem, without using redundant ones, and, of course,
without violating any of the conditions that apply to mixed boundary value problems. Including
redundant conditions has the same effect as using the same equation twice (i.e. renders the
matrix of coefficients singular), while the subtle manner in which certain factors enter the
problem creates such dangers as overconstraining the problem by prescribing tractions and
displacements along the same direction.

The governing singular integral equations (eqns 3.23-3.26) ensure that the base-and the sides
of the block do not rotate and do not elongate (shrink). Equation (3.27) represents the global
equilibrium for the rigid block in the vertical direction. Equation (3.30) is a statement requiring
B(x) to be antisymmetric. This, along with eqn (3.22) which requires that E(y)=-C(y),
satisfies the equation of equilibrium in the horizontal direction. Equations (3.28) and (3.29)
impose kinematic restrictions on the problem. Equation (3.28) fixes the sides of the block at
x = *c, while eqn (3.29) requires that the base and the sides of the block do not move relative to
each other in the vertical direction.

Equations (3.23)—3.30) are therefore the relationships appropriate for the solution of the
problem of a rigid block embedded in an elastic half space and undergoing vertical displace-
ment.

The problem of a rigid block embedded in an elastic half space and forced to translate in the
negative x-direction without rotation, under the action of a horizontal load 2Q, and a moment
M, as shown in Fig. 3, is also formulated here.

Ay

Fig. 3. Geometry and coordinate system for an embedded block undergoing horizontal translation or
rotation.
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The boundary conditions appropriate for this problem are the same as those given in eqns
(3.1)~(3.3) for the vertical translation problem. The symmetry and the subsidiary conditions
appropriate for the horizontal translation case are given next:

E(y)=C(y), F(y)=-Dl(y); (331

A(x) = —A(-x), B(x)=B(~x): (3.32)

f B(x)dx+2 fo " C)dy =20 (3.33)
“fou e

fo [Ecl],-o dx =0; (3.34)
¢ aux _ h a—u{ A

[ [5] e[ (] om0 639

fo " A(x) dx =0. (3.36)

The horizontal displacement of the rigid block problem is similar to the vertical displace-
ment problem; therefore, numerical results for this problem are not presented in this paper.
However, the numerical analysis was performed and the results are reported in[9].

4. ROTATION OF EMBEDDED BLOCK
This section investigates the problem of a partially embedded rigid block that rotates
through an angle a under the action of a moment M, as shown in Fig. 3. Here, the tangential
load Q is set equal to zero. The boundary conditions for this problem are given next:

e o My_ . _ =h:

=0 ZE=a —c=xs=cy=h @.n
s o Mg 0=ysh x=zc @2
ay ] ay ] ’

Substitution of the horizontal and vertical inclusion results derived in Section 2 in eqns (4.1)
and (4.2) leads to a system of six governing singular integral equations with generalized Cauchy
kernels. However, the symmetric nature of the problem allows for the elimination of two of the
unknown stress discontinuities, since the relationships given next must be satisfied:

E(y)=C(y); F(y)=-D(y). “3)

Therefore, only four of the equations represented by eqns (4.1) and (4.2) are necessary for the
solution to this problem. Note that the symmetry of the problem also requires that A(x) is
antisymmetric, and B(x) symmetric in the range ~c <x <c.

Equation (4.3) is incorporated to write the equations represented by eqn (4.1) and those of
(4.2) at x = ¢ in the following form.

c c h -
i) AKwishisks + [ Be)Kswhisks + [ COWmtsh + Eucohin

]
+ J; D) Lsi(x,h:t) - Loi(x,h;t))dt =0, —csx=< c; (4.4)

1 c c h -
m{ I_c A(s)Kna(x,h;s)ds + f_c B(s)Ksox,h:;s)ds + L C([Lna(x,h;t) + Lys(x,h;t))dt

h
+ L D(t)[Lsy(x,h;t) — Lgx(x,h ;t)]dt} =qa -csx=sc; @49
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Ink+n 1)#{1 A(s)Kns(c,y:s)ds + f B(s)Kss(c,y;s)ds +f C()(Lns(c,y:t) + Lys(c.y:n)dt
+ [ DW-Locynt)=-a, 0sysh w6
m{[ A(s)Kn4(c,y;s)ds +f B(s)Ksic,y;s) f C(t)Lndc,y:t)dt
+L D()[Lsa(c,y;t) - Es4(c,y;t)]dt} =0, 0sy<h 4.7

The kernels appearing in eqns (4.4)-(4.7) have been defined previously. Note that the relation-
ships in the vicinity of the corner (c, h), given by eqns (3.16), are also applicable to this
problem. The order of the singularities at the points (+c, 0), and (xc, h) was derived previously,
and is given by eqns (3.14) and (3.21), respectively.

The unknown functions A(s), B(s), C(t) and D(t) have integrable singularities at the end
points. Thus, eqns (4.4)~(4.7) must be supplemented by additional conditions, and the ones
appropriate for this problem are given next:

< h
f B(x)dx +2J’ Cly)dy =0; (4.8)
e 0
‘ M] - ca:
J; [ax y=de ca; (4.9)
c & a h [au,] _ .
L [ax Lodx fo | 4y = ha (4.10)
f( A(x)dx =0. 4.11)

Equation (4.8) represents the global equilibrium equation for the rigid block in the x-
direction. Equilibrium in the y-direction is satisfied by eqn (4.11), which requires that A(x) is
antisymmetric, in association with eqn (4.3), requiring that F(y) = —D(y). Equations (4.9) and
(4.10) impose kinematic restrictions on the problem. Equation (4.9) prescribes the translation of
the corner (c, 0) of the block in the y-direction, while eqn (4.10) gives the relationship between
the horizontal displacements of points (c, 0) and (0, h) on the block. It should be noted that the
usual small angle approximations have been employed in writing eqns (4.9), (4.10).

5. NUMERICAL ANALYSIS AND DISCUSSIONS
(a) Numerical analysis
The objective of the numerical analysis is to solve numerically the systems of governing
singular integral equations with the corresponding subsidiary conditions, derived in the previous
sections, for the unknown stress discontinuities.
The equations are normalized by introducing the following variable changes:

x=cX, §$=cS§; .Y
h - h -
y=5(l+y), t=§(1+t). (5.2)

In addition, the stress discontinuities are given forms that reflect their correct singularities at
the corners (and the surface). For the case of vertical displacement of the rigid block the
following substitutions are made:

AW =EAex1- 9 Bo=EB@0- 5.3)
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C(f)=z§5‘(t_)(1 DN+
D(I)=g{iﬁ(?)(l“‘t_){"(]q.,f)n-‘_ (5.4)

To normalize the equations derived for the case of rotation of the rigid block (see Section 4)
the following substitutions are needed:

A(s) = DA 4 — gy

B(s) =2t DA gy gyen 55)
e =2t Deshay - e iy

Dy =2 D 5y et e )

The substitutions given in eqns (5.1) and (5.2) also apply to this problem.
Equations (5.1)~(5.6) will appropriately normalize the governing singular integral equations
and the subsidiary conditions so that the numerical analysis may be conducted. An adjustment

is required in eqn (5.1) for normalizing eqns (3.28), (3.29), (4.9) and (4.10); instead of
x = c%, take

x = c(l+%)/2. (5.7
For convenience, the parameter v is introduced, and is defined as
v =clh. (5.9)

It should be noted that for the case of rotation of the rigid block, it becomes necessary to assign
a specific numerical value to either ¢ or h. Thus, for that problem h is given unit length, and
therefore y becomes equal to c.

The numerical scheme to be used in this analysis is that described in Erdogan, Gupta and
Cook{[10}, and is a collocation scheme based upon formulas for Gaussian integration (see
Stroud and Secrest[12]). The integration points, §;, fx, and the collocation points, %;, 7, are
defined as the roots of the Jacobi polynomials as follows:

Py 47(5)=0; Pu-“0(5)=0; 5.9)
Py&tn-(1y=0; Py %"(F,)=0. (5.10)

The corresponding weights are obtained from the Gauss to Jacobi integration formula (see [12]).

Note that since the subsidiary conditions, which impose kinematic restrictions on all
problems, require integrations to be performed along y =0 and x =0, additional integration
points and weights are needed. The integration points appropriate to the interval (0, c¢) along
y = 0 are obtained from

Py0(5)=0 .11

while the ones for (0, h) along x = 0 are obtained from the Legendre polynomials, as the Gauss
formula for numerical integration may be used in this case, since there are no singularities at
the end points of the interval. The zeros of the Legendre polynomials (integration points), and
the weights associated with the Gauss formula can be obtained from several sources (see, e.g.
Abramowitz and Stegun[13]).
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The asymptotic relationships in the vicinity of the corners (= c, h) are in the forms given by
eqns (3.16) and (3.17), where, for the case of vertical translation, the following relationships are
valid:

Ao= A(D)/2'Y, Bo=B2"¥*:
Ab= A(-1)2, Bi=B(-1)/2™¢; (5.12)

C09D05E01F0 = C(l)vﬁ(l)?E(l),F(l)‘ (513)
For the rotation of the rigid block problem eqn (5.12) is replaced by:

Ao=2"""yTFA(1), Bo=2"""yEB(1);
Ap=2"1y A=), By=2"wEB(-1). (5.14)

The barred quantities in eqns (5.12)-(5.14) have already been defined.

The procedure for obtaining solutions is the same for both types of loading applied to the
rigid block, and is as follows. The symmetries of A(s) and B(s) are used to collapse the parts of
the normalized equations containing them, thereby eliminating N of the unknown quantities.
The problem is thus reduced to finding the solution to a system of 3N simultaneous algebraic
equations in the 3N unknowns A(5), B(5), C(1,) and D(1,), where i =1,2,...,N2and k = 1,
2,..., N. The governing singular integral equations provide 3N-4 equations, and the subsidiary
conditions supply four more for a total of 3N. By taking advantage of the antisymmetry of B(x)
(eqn 3.30) and of A(x) (eqn 4.11), we can rewrite them as

B©®)=0 (3.307
A0)=0. 4.11)

The quantities B(0), A(0) are expressed as polynomials with N/2 terms by use of the Lagrange
interpolation formula (see, e.g. Davis[14}).

(b) Results and discussion

The numerical analysis was completed for a range of the geometric parameter y(0.05<y <
8), and for Poisson's ratio (plane strain) of » =0.3. The rate of convergence was tested by
varying the number of points used at eight point intervals, from N =16 to N =48. The
convergence of the global results appeared satisfactory and will be discussed in detail later. All
results presented in this paper will be given for N = 48, The results for the respective problems
of vertical displacement and rotation of an embedded rectangular block will be given next.

Vertical displacement. The load diffusion curves for several values of y are shown in Fig. 4
for the case when the block moves vertically without rotation. The load acting on the block at a
distance y below the surface is given as a fraction of the total load, where both load and
distance have been put in dimensionless form. The load given by the intersection of the
load-diffusion curves and the y = h axis represents the load carried by the base of the block for
each y. Analogous to the block problem is that of two parallel inclusions, each subjected to a
vertical load P and having no rotation. The results for this problem can be compared with those
of the vertical displacement for the block. The load diffusion, calculated for the two-inclusion
case, is shown in Fig. 5, where it is compared to the rigid block results; the solid lines represent
values obtained from Fig. 4, and the dashed lines represent the two-inclusion case. These latter
curves go to zero at y = h, since there is no base to carry part of the load. Furthermore, the
dashed and solid curves are relatively close provided that 0 <y <0.8h. Thus, for relatively
slender blocks, a solution which ignored the base would give approximately valid results. Figure
6 shows the percentage of the applied load P carried by the side of the rectangular block as a
function of c/h. As expected, when c/h is small most of the load is carried by the sides; as c/h
increases the base carries a larger share of the load. When 1 is approximately equal to 0.42, the
sides and the base each carry half the load.

Figures 7 and 8 show the variations, respectively, of the discontinuities in the normal
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Fig, 4, Vertical Displacement: Load diffusion for various values of c/h.
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Fig. 5. Vertical Displacement: Comparison of load diffusion curves for the rigid block and the two-
inclusion problems.

stresses along the base of the block, and those in the shear stresses along the sides for several
values of c/h. Since a zero stress state prevails throughout the rigid block, these stress
discontinuities represent the actual stress distributions along the walls of the elastic body
surrounding the block, as is evident from the definitions of A(x), B(x), C(y) and D(y). Also,
since the normal stresses are symmetric along the base, they are plotted only for 0 < x < ¢ and
exhibit singular behavior at the end x = c. The shear stresses are plotted for 0 <y <h, and
singular behavior is noted near both ends, y =0, h. It is further observed that the magnitudes of
both A(x) and D(y) vary proportionately with the amount of load carried by the base and the
sides, respectively. Thus, the magnitude of A(x) increases with y, while the magnitude of D(y)
decreases as v increases.

One estimate of the accuracy of the results may be obtained by calculating the displacements
in the y-direction along the surface of the block y =0, relative to the midpoint (0, 0). Since the
block translates as a rigid body along y, these displacements should be small when compared to
those obtained from the solution of the two-inclusion problem undergoing vertical displace-
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Fig. 6. Vertical Displacement: Percentage of the applied load P carried by each side of the rectangular
block as a function of v = ¢/h.
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Fig. 7. Vertical Displacement: Normal stresses acting on base of block vs distance from center for several
values of c/h.

ment. The results of this comparison are given in Table 1. It is noted that the displacements at
the corner x = ¢ for the two inclusion problem vary from being approximately 18 times greater
than the block displacements (for y =0.3), to being 175 times greater (for y=4). The
displacements obtained for the rigid block problem tended to oscillate about zero, while the
ones for the two inclusion problem grew with distance from (0, 0), as expected. It should be
added that for y <0.3, the value of the ratio |u,fu,| approaches unity. That is, as y = c/h
becomes smaller, the presence (or absence) of the base has little or no effect on the results
calculated near the surface. Therefore, a comparison of those results for the purposes of Table
1 would have little meaning, since the surface displacements are already small to within the
accuracy of the solution.

Rotation. Results obtained for the problem of rotation of the embedded rigid block are
presented in Figs. 9-13. The normal and shear stresses acting on the base of the block are given
in Figs. 9 and 10 as functions of the distance from the midpoint, for several values of c/h. The
normal and shear stress ‘distributions along the sides of the block for 0 <y < h, are plotted,
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Fig. 8. Vertical Displacement: Shear stresses acting on side of block vs distance from free surface for
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A
3 -
N
3
<
-}
L 4t
~
0 -
) | ! i t
0 0.2 0.4 06 0.8 1

x/c

Fig. 9. Rotation: Normal stress distribution at y = h, 0 <x <, for various values of c/h.

Table 1. Vertical Displacement: Comparison of the y-displace-

ments relative to the midpoint at the surface y =0 of the rigid

block (uy,) and the two-inclusion (u,,) problems for several values
of y=clh

xfe Juy ]
ch| 03 0.5 1 2 4

0.2 03092 00547 00018 00028  0.0016
0.4 00154 00119 00101 00011  0.0010
0.6 02421 00461  0.0051  0.0002  0.0007
0.8 00258 00132 00092  0.0047  0.0015

1 00544 00178 00149 00081  0.0057

3
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Fig. 10. Rotation: Shear stress distribution at y = h, 0 < x < ¢, for various values of c/h.

respectively, in Figs. 11 and 12. The curves show the variation of the magnitude and sign of the
stresses with vy. It should be noted that Figs. 9 and 10 indicate that the base stresses become
bounded at the corner (c, h) for some value of y = c/h. Therefore for this particular value of v,
the second root found ({ — 1 = —0.24096) may be the governing singularity in the vicinity of the
corners (=c, h).

A better understanding of the mechanics of the problem can be obtained by examining the
moment equilibrium equation for the block, which is given next:

¢ I h h
M=—f Ax)x dx+hj B(x) dx +2f C(y)y dy—2cJ' D(y)dy. (5.15)
- - 0 0

In writing eqn (5.15) use has been made of eqn (4.3). Using the symmetries of A(x) and B(x)
appropriate for the rotation problem, and incorporating eqns (5.1), (5.2), (5.5) and (5.6),
eqn (5.15) is rewritten in the normalized form given next:

3 i
‘,F;z %f_z""‘: ”[-473 fo A®R(1 - 55" dx + 492 fo B(z)(1- 7% dx
1o "
+ L CH+ 7)1 =7 A+ 7" dy -2y LD(i)(l—i)"‘(lw)""d?}. (5.16)

Equation (5.16) may be written as

R |X

;%, = Ag+Bs+Cs + Dy, 5.17)
where the definitions of the quantities As, ..., Ds are readily obtained by comparing eqns (5.16)
and (5.17). The ratio M/uh’a represents a measure of the rotational stiffness of the partially
embedded rigid block. Therefore, the quantities As, Bs, Cs and Ds represent the contribution
made to the stiffness by the stresses A(x), B(x), C(y) and D(y), respectively. Table 2 shows the
variation of these quantities with y. Note that the contribution of the normal stresses acting on
the base of the block become significant only for y = 1, while the opposite is true for the normal
stresses acting on the sides (their contribution becomes more important as y becomes smaller).
It is also observed that the contribution of the base shear stresses to the total stiffness remains
proportionately low for all values of y, while that of the side shear stresses increases with v.

By dividing M/ih’a by ¥ one obtains a new ratio, namely M/uca. These two ratios are



Fig. 11. Rotation: Normal stresses acting on the side of the block for 0 <y <h, for several values of c/h.
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Fig. 12. Rotation: Shear stress distribution along the side of the block for 0 <y <h, shown for several
values of c/h.

Table 2. Rotation: Variation of the contributions of the stresses to the rotational

stifiness of the embedded block with y

C”l As Bs CS DS
0.05 ~0.002 -0.236 1.232 ~0.061
0.1 -0.006 —0.505 1.550 0.147
0.2 -0.020 -1.026 2115 0372
0.3 -0.036 —-1.568 2.739 0.664
0.5 0.002 -2.091 3.35 1.356

1 1123 -0.083 1.738 2913
2 6.424 2.680 -0.255 6.656
4 27.685 4.369 -0.959 18.175
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Fig. 13. Rotation: Stiffness for moment applied to rigid block (curve I: right ordinate, upper abscissa; curve
11: left ordinate, lower abscissa).

plotted as functions of v in Fig. 13. There are two limiting tests for these results: (1) as c/h
tends to zero, the results for M/uh’a tend to the single inclusion result; (2) as c/h becomes
large the results may be compared to the one obtained by Muskhelishvili for the rotation of a
rigid stamp bonded to an elastic body (see[15], p. 492, eqn 114.19a). As may be seen in Fig. 13,
the two limiting cases seem to support the accuracy of the calculated results.

The relationships established through an asymptotic expansion for the corner (c, h) were
checked by calculating the values of the stress discontinuities at the corner, and substituting in
eqns (3.16). The corner values were calculated by a quadratic extrapolation applied to the three
points nearest that corner. It was found that eqns (3.16) were not satisfied; the size of the error
was generally of the same order of magnitude as some of the individual terms. Even though an
allowance must be made for the error introduced by the quadratic extrapolation, this size error
is still considered large for the present type of analysis. To further consider this discrepancy,
three of the relationships given in eqns (3.16) were incorporated in the system of 3N equations,
by removing the equations closest to the corner (¢, h) from the corresponding boundary
conditions. This new system of equations vielded results which, away from the corner (c, h)
matched the results previously obtained very closely (to four significant figures), and in
addition, satisfied all of eqns (3.16). Moreover, the global results obtained using this new system
of equations varied slightly from the ones obtained previously. To further test the sensitivity of
the global results to the collocation scheme used, the order of the singularity at (¢, h) was
changed from ¢ — 1 = —0.40484 to —0.5, and the calculations were repeated with N = 48. Lastly,
the singularities at (c, h) and (¢, 0) were set equal to —0.5, and a new set of results obtained for
N =48. A comparison of some of the results obtained from these solutions is given in Tables 3

Table 3. Vertical Displacement: Comparison of the portion of applied load carried by the sides of the

block, calculated by: (1) Using the correct singularities ({ - 1, n - 1); (2) Using the correct singularities

and three of the corner conditions; (3) Assuming square root singularity at (c, h); (4) Assuming square
root singularity at both (c, h) and (c, 0)

Case Portion of applied load carried by the sides of block
c/h | 0.05 0.1 0.2 0.3 0.5 1 2 4
1 0.7797  0.7079  0.6026  0.5349 04606 03658 02704  0.1927
2 0.7850  0.7109  0.6090 05444 04708  0.3741 02789 02027
3 0.7835 07106  0.6015 05315 04555 03592 02627  0.1837
4 0.7839 0.7098 0.5961 0.5242 0.4500 0.3503 0.2638 0.1832
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Table 4. Vertical Displacement: Comparison of the error in the vertical displacement of the corner of

the block (c, 0) relative to (0, 0) calculated by: (1) Using the correct singularities ({-I; n~1);

(2) Using the correct singularities and three of the corner conditions; (3) Assuming square root
singularity at (c, h); (4) Assuming square root singularity at both (¢, h) and (c, 0)

Case Vertical displacement of corner (c, 0) relative to (0, 0)
c/hf 005 0.t 0.2 03 0.5 1 2 4
! 0.00191  0.00253 0.00197 000102 000115 0.00231 000255 0.00270
2 0.00191 000253 000197 000102 000115 000231 000255 000270
3 0.00192 0.00256 0.00203 0.00110 0.00124 000237 000257 0.00271
4 0.00059 0.00139 0.00051 -0.00061 -0.00017 0.00191 0.00252 0.00270

and 4. An examination of these tables shows that the global results remain relatively unaffected
by small changes in the order of the corner singularities.

1t should be noted that when the order of the singularities at both (c, k) and (c, 0) was taken as
~0.5, the related Jacobi polynomials reduced to the Chebyshev polynomials of the first kind
(see, e.g.[13]). Numerical solutions of Cauchy-type singular integral equations with regular
kernels obtained by use of the Gauss~-Chebyshev integration formula, have been shown to
converge to the correct results by Erdogan and Gupta[16], and Kalandiya[17]. Furthmore,
Kalandiya states in{17] that this method was also successfully applied to problems with
generalized kernels. Of course, as the singularities used here are not of the correct order, this
method cannot be expected to yield correct results at the corners. However, the fact that the
global results obtained by using the Gauss-Chebyshev integration formula match closely those
obtained using the Gauss-Jacobi integration formula, as may be seen in Tables 3 and 4, tends to
support the validity of the global results.

To investigate the rate of convergence of the global resuits, the number of points taken was
varied at eight point intervals, from N = 16 to N =48. Several of the calculated global resuits
are presented in Tables 5 and 6. Table 5 shows the calculated values for the portion of the load
carried by the sides of the block for the vertical displacement case. The variation of the ratio
Miuh*a with N, is shown for several values of c/k in Table 6. It is seen that the rate of
convergence of these representative global quantities is quite satisfactory.

Although the accuracy of the global results obtained by use of the collocation scheme
introduced in [10] has been shown to be satisfactory, the accuracy of the results in the vicinity
of the corners is not certain. There are two reasons for this: (1) A second root is present at the
corner {c, h) and is not taken into account; this root has a singular contribution of order

Table 5. Vertical Displacement: Variation of the amount of load carried by the sides of the block with
the number of points used, for several values of ¢/h

N Portion of applied load carried by the sides

c/h| 005 0.1 02 0.3 0.5 1 2 4

16 0.1684 06641 05622 04689 04010 03357 02380 0.1565
2} 06411 07000 05815 05016 04313 03498 02529 04752
k3 0.7458 07052 05916 05183 04460 03574 02612  0.1835
4 07721 07069 05981 05283 04548 03623 02666 0.1889
48 07797 07079 0.6026 05349 04606 03658 02704 0.1927

Table 6. Rotation: Variation of the ratioc Mfuh’a with number of points used, calculated for several
values of c/h

N Miph’a
cfh| 008 0.1 0.2 0.3 0.5 1 2 4
16 1.0457 1.1898 1.4789 1.8050 2.6216 56960 155036 49.152
24 1.0541 1.1880 1.4750 1.8028 2.6226 5.6964 15.5006 49.2397
k4 1.0857 1.1868 1.4731 1.8013 26213 5.6944 155088 49.2604
40 1.0558 1.1861 1.4720 1.8001 2.6196 56922 155070 49.2674

48 1.0558 LIBS6 14712 L7991 26179 5.6903 15.5054  49.2699
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0.75904-1 = —0.24096 near that corner. As pointed out by Westmann in[8], although the stress
field in the vicinity of the corner is dominated by the largest singularity, the presence of two
singular terms may be important to the problem. (2) In two recent papers, [18, 191, Theocaris
and loakimidis suggest that the collocation points as determined for the Gauss-Jacobi method
may not be the correct ones. In [18], it is suggested that the rate of convergence of the results
can be improved by a different choice of collocation points associated with the Gauss-Jacobi
integration rule, or by using a different scheme such as the Lobatto rule. The collocation points
for the case of real singularities are, respectively, the roots of the Jacobi-functions, and of their
derivatives (see Elliot[20]). In {19], the problem of an antiplane shear crack terminating at a
bimaterial interface solved by Erdogan and Cook[21], was reconsidered, and numerical results
were obtained by using the modified Gauss-Jacobi and Lobatto-Jacobi methods discussed in
[18]. It was found that while in general the results of [19] matched closely those of [21], the
value of the stress intensity factor at the interface obtained by Theocaris and loakimidis was in
much better agreement with the theoretical resuit than that obtained by Erdogan and Cook.
However, the rate of convergence was not satisfactory. The authors attributed this to the
existence of a second singularity of positive order near the interface. A technique is proposed
for accounting for both singularities in the analysis, and this results in a much faster
convergence' of the results to the theoretical value. However, it should be realized that this
technique could not be applied to the present analysis, since it deals with singularities -of
opposite signs.

In view of the arguments just presented, the accuracy of the corner values of the stress
discontinuities obtained in the present analysis, by use of the collocation scheme introduced in
[10], is uncertain.
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APPENDIX
The functions K., Ks, Ln, and Lsi, i=1,2,...,7, are given as

o Ah= VA= yP-(x=5P] (P =Ifh+y)  2k(h=y)ith+ )}~ (x - 5))
Knitxyis) [(h=y*+(x-sPF +(h +yF+(x~s) * [(h+y)+(x-s)

_8hy(h + y)(h +y)~3(x - 5)%]

[(h+yP+x-5F (AD
v o o J UK =B~ yP +x(x ~5)) (41 ax(h+y)? 8hy[3(h + y)* - (x - 5)?
R e T T e et
(A2)
Kns(z.yis) = (x ){2[(x+2)(h-y)2+x(x—s)2] (k3+1) 4x(h +y) shy[s(h+y)’—(x-s)’1}
MY I N T -y + G- Ay A G-s) [h+y P +Gx-sIT Wh+y)+G-sFT

An=ylh-yY~(x—sF]_ (= 1)h+y) | 2uc(h—y)(h+yP-(x~sF]  Bhy(h+y)(h+yP~3x - s))

Ksday) == o s Gyt Gost ' [P GooF [h+y P +(x-5T
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